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Abstract-This paper describes an innovative approach to 
,spacecraft fault protection based  on automatic code- 
generation techniques. 
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1. INTRODUCTION 

On October 24*, 1998,  the Deep Space One (DS-1) 
spacecraft launched aboard a Delta 11 rocket as the first step 
towards the bold task of testing  and validating 12 new 
technologies for future missions. This launch also 
represented yet another  thrilling event; namely, the 
successful test and validation of a 131h heretofore 
undisclosed technology: model-based code-generation of 
the spacecraft's system-level fault-protection (FP) software 
from behavioral state  diagrams  and structural models. 

Until DS-1, the Jet Propulsion Laboratory (JPL) had not 
used code-generation techniques on large scale for avionics 
software. However, the constraints of the mission design 
and development cycle, limited budget and resources 
dictated a departure from past practices. The analysis of the 
system-level issues started in March 1997  with minimal 
staff while the actual design and development of the fault- 
protection engine started in earnest in June 1997. Radical 
departures from past projects were necessary to complete 
the design, development and testing of the system-level 
fault-protection in time for launch.  The requirement that 
post-launch activities be directed by fault protection further 
increased the difficulty of the task; on other spacecraft, 
such activities are typically handled with sequences. 

First, a decision was made in June to use the successful 
Mars Pathfinder (MPF) fault-protection engine because this 
system made a nice separation of the various concerns 
between detecting faults, signaling faults and executing 
fault responses. However, the limited resources available 
precluded a duplication of  MPF's design and development 
approach because we had too few software engineers and 
too much uncertainty about the hardware, the flight 
software and the scope of the system-level issues. This high 
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degree of uncertainty translates into a high degree of design 
instability and volatility. To accommodate this difficult 
state of affairs, we shifted the design and development of 
the system-level fault-protection software from low-level 
concerns about  the C language to higher-level concerns 
about  system-level requirements, issues, strategy, and 
tradeoffs. To make this top-down design approach work in 
a team environment while retaining sufficient 
implementation flexibility, we standardized on using state 
diagrams and attribute specifications as design notations for 
describing the behavior and  structure of fault-protection 
designs. 

In this paper, we describe the process we  used to leverage 
model-based  code generation from state  diagrams  and 
structural specifications to better respond to  the evolving 
requirements and scope of DS-1 's system-level fault- 
protection design, development, test and operation. The 
evolution of the high-level design and  the low-level 
changes in the flight software architecture and interfaces 
contributed to multiplying the number and frequency of 
fault-protection software releases thereby creating a 
multitude of software integration issues. To address the 
resulting software integration issues, we broadened the 
scope of code generation to other forms of model-based 
analysis techniques more traditionally associated with first- 
principle's reasoning about physical models. Additionally, 
we describe our in-flight launch and  initial acquisition 
experience. 

2. MOTIVATION 
In 1997, the schedule to complete within 12 months the 
design, implementation and testing of the FP software for 
DS1  looked challenging. At that time, launch was' 
scheduled for  July 1998; it was later delayed due  to late 
hardware deliveries. To be sure, the spacecraft is already 
complex due  to a single-string design, tight pointing 
requirements and  12  new hardware and software 
technologies. Strategically, we decided to apply code- 
generation techniques for several reasons: 

Precedent:  There was a precedent on  DS-1  for the code 
generation of the monitors of the Remote Agent 
Experiment [2]. 

Schedule:  There were too few software engineers available 
to enable quick turnarounds from design to code. 

Stability & flexibility: Changes to the software interfaces 
and architecture were expected. This in turn threatened 
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to further exacerbate FP software issues. 
Priorities: Strategically, it made sense to focus the team 

efforts on analyzing the intricate complexities of the 
system-level interactions instead of dividing software- 
engineering tasks across the team. 

Reviewable functionality: The complexity of the 
spacecraft made analyzing scenarios a difficult and 
challenging task. We needed a design notation 
sufficiently clear to allow several people to follow an 
analysis discourse and sufficiently compact to facilitate 
such reviews. 

Code-generation techniques allowed us to make an 
important separation of concerns between  what  system- 
level FP should do (design) and how it should do  it 
(implementation). 

3. DESIGN STRATEGY 
Wary of the pitfalls of code generation, we emphasized a 
rigorous review process to track progress, to identify 
technical difficulties, and  to calibrate the scope of the fault 
protection design to fit within our resources. 

At the level of the FP team, we engaged on a series of semi- 
weekly meetings to debate the FP issues, to review 
supporting materials and  to discuss FP designs. Each FP 
monitor and response was managed under the cognizance 
of an engineer responsible for the two main aspects of the 
design: structure  and behavior. Since the scope of the FP 
design was still in flux, it was more important to focus  on 
this primary design content rather than include secondary 
design aspects such as telemetry, commanding, and test 
interfaces. From a software viewpoint, we counted on the 
software architecture to  handle  all secondary design 
concerns in a standard  and consistent manner. Thus, the 
bulk of the design meetings focused instead on the primary 
components of the fault-protection design (see Fig. l), 
namely, a structural definition: 

- a software interface with the flight software manager 

- internal variables to hold state information and 

- parameters to calibrate and control the monitor or 

task that calls the monitor; 

intermediate computations; 

response behavior; 

and a behavioral definition: 

- a state  diagram  defining the behavior of the monitor or 
response as a function of its inputs, internal variables 
and previous state. 

Building from prior experience with high-level 
specification languages [2] and high-level diagrammatic 
notations for behavior, we concluded that reviewable 
functionality was the most important criteria to enable the 
kind of high-level peer design reviews  necessary to meet 
our schedule. 

Figure 1 The DS1 Fault-Protection 
architecture 

3.1 STATECHARTS 

Statecharts provide a good mix of compactness, semantic 
precision and readability for representing behavior. These 
attributes are important to  minimize misunderstandings, to 
conduct effective design reviews and  to disseminate the 
most important details of the FP design to a broad audience 
of various backgrounds. Despite the natural fit of state 
diagrams as a compact and precise high-level design 
notation, several practical issues remain. Specifically: 1) 
establishing a standard diagrammatic notation, 2) defining 
semantics suitable for the project needs and 3) translating 
statechart designs into  flight software (See 5 4.2). 

Figure 2 shows a simplified view of the DS1 statechart 
controlling the system-level activities following separation 
from the launch vehicle. For DS1, we used the Matlab 
Stateflow@  toolbox to design such statecharts. This tool 
enforces standard diagrammatic conventions for 
representing statecharts. The topology of the launch 
statechart is a three-level hierarchy. At the top level, there 
are two states, 'init' and "launch". At a given level, a 
transition from a black dot indicates the starting state for 
that level. The transition from the 'init' state is predicated 
on the 'LAUNCH event. The fault-protection engine 
broadcasts this event  when it receives indication that the 
spacecraft has booted-up and separated from the launch 
vehicle. This figure also illustrates some of the extensions 
to the statechart notation we introduced for DSI. For 
example, we introduced the notion of 'GOT0 either to 
show explicitly the notion of statechart reuse like a sub- 
routine function (e.g., the 'detumble' statechart is used 
elsewhere), or to modularize a complex process into smaller 
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/ launch/ entry: move-on = NM-FALSE; 

on NOTIFICATION2 move-on = NM-TRUE; 
dol(FPR-START-NOTIFICATlON-T"R2. eclipse-timer); 

'configure t e l e c o d  
, activate-sequence(te1ecomJ 

f [  has-finished(launch-config2] 

JUMP(sun-standby-ssa); 

A-1 detumbie spacecraft/ I 
/ I 

[ :sub-standard NAV ephemeris" I ... 
"SRU is suspect" ] 
acq timed out' I ... [ 'acq success' I ... 

'acq timed out' I ... 
'sub-standard NAV ephemeris' 

I 1  NOTiFlCATlONl / NOTIFICATIONl\ I 
1 st deployment attempt/ 

J [ move-on :=TRUE I 'sun is seen. 1 1 
TIMEOUT (wait for eclipse/ 1 

t [ has-finished(monitor-response-cfg) ] 
PMEOUT 

deDlovment status' 1 
fault-protection configuration/ 
GOTO(monitor-response-cfg); 

\ 1 
Figure 2 Simplified Launch Statechart 

chunks  (e&,  the 'launch-config' statechart is only used  for 
launch processing). 

The combination of a high-level design approach with code 
generation of  low-level software implementation resulted in 
a strategy that: 

- Facilitates frequent tuning of the overall FT design; 
- Enables implementation flexibility to adapt to 

changing interfaces and software requirements; 
- Minimizes the software coding effort to concentrate 

instead on design issues; 
- Reduces the number of errors introduced by the coding 

process. 

The design strategy outlined placed great emphasis on 
statecharts. This approach matched very  well  with the 
needs of spacecraft fault protection because the essence of 
failure recovery is intrinsically a behavioral problem. In our 
approach, we relied on the power of teamwork to enact the 
best possible behavioral strategies to address the failure 
recovery needs of DS 1. 

However, this behavioral approach to fault protection 
design necessitated an efficient, streamlined design  process 
to analyze, review and test failure scenarios against the 
fault protection design. To meet this challenge, we made a 
strategic decision to automate as much as possible the time- 

consuming and error-prone aspects of the process through 
software code-generation technology as described next. 

4. CODE GENEFWTION 

4.1 CODE GENERATION ISSUES 
Today, many software-engineering design tools feature 
code generators that produce target-specific software from 
high-level design information. Code generators are highly 
popular; they enforce a rigorous approach to generating 
software due to their systematic and consistent operation. A 
general-purpose code-generation technology does not exist 
since there is no general-purpose mechanism to understand 
arbitrary design information. Given a high-level design 
language and an associated code-generator capable of 
handling design models written in that language, we can 
establish a taxonomy of code-generation properties to 
compare the available technologies. The dimensions of our 
code-generation taxonomy derive from five pragmatic 
issues as described below. 

Algorithmic Customization 

Are the algorithm details of the code-generation 
approach accessible and modifiable? 

Perhaps the most important risk factors involve limitations 
in output and algorithmic customization. Changes to the 



project environment and requirements may call for 
unprecedented flexibility in code-generation algorithms and 
output. If this flexibility is at a level  beyond  that  which the 
code-generation technology provides, it becomes  necessary 
to devote resources to work around existing code- 
generation limitations. This issue becomes of central 
importance in generating code from statecharts, particularly 
when the semantics of the statechart notation are adapted to 
match the project’s architecture and requirements. 

Without adequate customization potential, it may be 
necessary to engineer a new code-generator to gain 
sufficient control over the code-generation process. 
Alternatively, it is possible to post-process the output of the 
code generator. Either way, the sudden increase of 
resources devoted to supporting or working around the 
existing code-generation tool instead of what the tool 
generates can result in unacceptable scheduling delays and 
expansive costs overruns. These undesirable effects are 
easily attributable to a code-generation technology that, a- 
priori,  might have matched the project needs but  doesn’t a- 
posteriori. Drastic decisions may follow  such as switching 
tools, or abandoning altogether the code-generation 
approach to revert to a more conventional and predictable 
software engineering process. 

A-priori knowledge 

What knowledge is embedded in the code generator? 

Code generation algorithms  are often  embedded inside a 
code generator. While software vendors typically hide such 
algorithms inside their code-generation products, such 
practices can make customizing a code generator to fit a 
project’s needs a difficult task. In fact, the practice of hiding 
key algorithms often results in users having to adopt a 
vendor’s viewpoint on code generation. This invariably 
occurs at  the expense of the project, which  then  needs to 
adapt its processes and organizations to accommodate the 
product’s constraints instead of adapting the product to the 
project’s constraints. The former approach places a burden 
on the project to be sufficiently flexible or conservative 
enough to avoid reaching beyond the capabilities a code 
generation tool can reasonably support. This issue is at the 
heart of many project failures. 

It is often difficult to cleanly separate all knowledge about a 
domain from the code generation mechanisms. Commercial 
tool vendors often hide strategic technologies inside their 
code generators. This unfortunately results in sealing 
domain-specific knowledge about  what is being generated 
inside the code generator itself. Without access to  this 
domain knowledge, it is often difficult, and sometimes 
legally impossible, to customize the domain knowledge to 
fit the project needs without building a code generator from 
scratch. To address this issue, many code generators use a 
template approach to encapsulate all domain-specific 
knowledge in a customizable form. The idea of a template 
is to describe what the generated code looks like in terms of 
boilerplate text annotated with special tags. A scripting 
language defines a framework to replace tags with results 
computed from the input data to the code generator as 

illustrated in Fig. 3. This figure illustrates a simple 
template mechanism where the code generator replaces tags 
in the template, @<name> and @<date>, with their 
corresponding values computed from the available domain 
information. The literal text, combined with the text 
produced from evaluating the tag, constitutes the generated 
output. 

/ *  File  generated on @<date> */  

extern  void @amne>-update (void) 

Template 

Domain Information 

0 - Code Generator 

/ *  File  generated on Jan 1 2 ,  1998 * /  

extern  void  control-error-update(void) 
( 

I . . .  

Figure 3 Code generation from templates. 

Output Customization 

What flexibility the code generation framework 
provides for custom code? 

Code generation tools typically provide output 
customization mechanisms that fall in three categories: 1) 
code generation templates as described earlier, 2) flags that 
control the form of specific output elements and 3) 
protected regions to insert and preserve user-provided text 
in the generated code. 

The two code-generators used for DS1 fault protection 
relied on the template mechanism to customize the code 
generator output. The second approach assumes that the 
customization flags are sufficiently expressive to anticipate 
all possible needs. The protected region approach 
complements the customization flag approach: users can 
add arbitrary code to the generated output at designated 
areas of the generated output. This customization practice 
then leads to a phenomenon of round-trip software 
engineering where user-defined customizations are 
preserved across multiple code generation passes. While 
this is appropriate when code generation is not a complete 
solution, we aimed on DS1 to generate all aspects of the 
software including structure and behavior since we  didn’t 
have the resources to perform round-trip engineering. 

Approach 

How does the code generator work? 



Rodney  Bell [ I ]  made a distinction between three 
approaches: structural, behavioral and translative. Each 
approach makes assumptions about the content of the 
model and therefore embeds a-priori knowledge  about  how 
the model information is organized. The structural 
approach views  model information as characterizing the 
nature of the objects in the model and relations such  objects 
have. The generated code then corresponds to the structural 
declarations and definitions of such objects and relations in 
the target language. The behavioral approach views  model 
information as  characterizing  the internal behavior of 
objects, typically expressed in terms of state diagrams. The 
generated code then corresponds to the implementation of 
such state machines into  the target language. 
Distinguishing between an application domain and 
architecture for this domain, the translative approach 
generates code according to a mapping between the 
application domain and  the architecture. 

The template approach uses a set of boilerplates, each 
corresponding to a type of desired output. Each such 
boilerplate also  contains special macro annotations that the 
code generator replaces with information from the input 
design semantic nature of the annotation. Each generated 
file thus corresponds to an expanded boilerplate where all 
macros annotations have been replaced in this manner. 

The translative approach is not  often  used; the code 
generation process is driven from the mapping of domain 
objects onto architecture. In this approach, elements of both 
the domain and of the architecture are inputs to the code 
generation process. 

DS1 used a template approach, which we describe further 
in  Sec. 4.2. 

Risk factors 

What impact code generation has on cost, schedule and 
technical risks? 

For DS1 fault protection, we chose a code-generation 
approach that espoused a zero customization policy towards 
the generated software. While regarded as a sign of 
flexibility, the ability to add custom code significantly 
increased the complexity of a software engineering process 
based  on code generation. Custom code becomes one more 
source of information that needed to be managed. This 
approach also introduced further complexity because it is 
an unnecessary degree of freedom: Solving issues in code 
generation at the level of the code generation inputs or even 
the algorithm yields architecturally elegant and consistent 
solutions across the board. Custom code stands out as an 
exception that further complicates the debate between 
fixing the architecture, the design and tweaking the result. 
Eventually, custom code stratifies into layers of 
customizations that break the consistency of the process 
and become  very difficult to manage. On DS 1, there were 
no provisions for a generic customization capability. This 
alleviated the need to merge machine and user generated 
code. 

4.2 CODE GENERATION APPROACH 

The Matlab Stateflow@  toolbox performs behavioral code 
generator from statecharts. It  is also an example of a 
template-based code generator where the template 
annotation and boilerplate code is embedded inside the 
code generator. 

In addition to this toolbox,  we  used another code generator, 
a Iterative Template Language Compiler (ITLC). This code 
generator is inspired from the  Matlab Real-Time 
Workshop@ Target Language Compiler (TLC). The Matlab 
TLC is a powerful mechanism to associate a customizable 
code-generation algorithm for each block in a Matlab 
SimulinkB model. Simulink models are defined by an 
interconnected set  of function blocks where inter-block 
connections define the flow of data in the model while 
blocks define the processes that operate on that data. To 
provide a flexible code-generation mechanism, the Matlab 
TLC combines aspects of the Per1 string-manipulation 
capabilities, the tag mechanism of HTML and the general- 
purpose computing capabilities of Matlab  into a code- 
generation language. Code generation is a self-contained 
process entirely driven by the properties of each block in a 
SimulinkB model and by the topology of the block 
interconnections. 

The Matlab TLC associates a template to a specific block 
type. The DS1 ITLC has a coarser granularity as a template 
represents the specific boilerplate for a given kind of 
generated file (headers, source files, documentation, test 
driver, etc.. .). Figure 4 shows the functional block diagram 
of the ITLC we designed for DS 1. 

. . Generaad 

. . . . . . . . . . . . .a , . .  1 Header 

1 
Generated 

Source 

Figure 4: Code generation process (Recursive 
Template Language Compiler) 



Whereas the Matlab TLC operates on a Sirnulink block and 
a template for that block  type, our ITLC operates on a 
specification and a template. The set of annotation tags 
constitutes the semantic link between the template and the 
specification in that tags can reference elements of the 
specification. Additionally, the Matlab TLC is a self- 
contained environment whereas our ITLC taps  on other 
additional sources of information as described in the next 
sections. 

4.3 KNOWLEDGE OF SOFTWARE  INTERFACES 

The set of all header files corresponding to the public 
interfaces in the flight software is available to the code 
generator in terms of a type information database 
constructed from such headers. For example, this database 
provides a convenient mechanism to generate software for 
the ground system to decode the values of enumerated types 
into  their corresponding symbolic enumerated names. 
Additionally, this database is recursively updated with 
header files produced by the code generator. This property 
enables the code generator to obtain knowledge of the data 
structures generated thereby simplifying the process of 
writing templates that refer to other structures previously 
generated. 

To illustrate  this process, 
we  will use a simplified 
specification of an attitude 
control error monitor as 
shown here. 

I I 

begin  variables 
MDC-States-t  acs-mdc 
double  error[3] 
end  variables 

I I 

Templates extract this information and produce header files 
defining C data structures for the flight software: 

I I 
typedef  struct { 
#forall  variables 

#end  variables 
} rn0n-Q  <name>-state-t; 

@<variabletype> Q <variable-name>; 

Once instantiated, 
we obtain a 
definition that  is 
parsed and added to 
the type database. 

typedef  struct { 
MDC-States-t  acs-mdc; 
double  error[3]; 

1 mon  control  error state t: 

This iterative software construction simplifies the process 
of instrumenting state variables since they are known to the 
code generator. For example, each fault-protection monitor 
updates a number of statistical properties about the data 
measurements it  is monitoring such as minimum and 
maximum values (also known as watermarks). We also 
defined state statistics for summarizing the behavior of 
discrete-valued measurements. Thus, a monitor 
Specification defines a set of watermarks and state statistics 
to compute as illustrated below  for the running example: 

STATE-SUMMARY(mdc-states) 
HIGH-WATER-MARK(control-error[3]) 
end  statistics 

This statistics specification has a meaning in the context of 
an architecture for computing the statistical properties of 
state variables like the one illustrated below  in UML 
notation: 

Knowledge of what constitutes an  analog variable and an 
enumerated variable stems from analyzing  the type of each 
variable involved. On DS1, the following template 
illustrates how this process takes place in a 2-step manner: 

typedef  struct { 
#forall  variables 
Q <declare-telemetry( Q <variable-name>)> 

#end  variables 
} mon-Q<name>-statisticst; 

At the first tag expansion pass, each variable name is 
expanded separately. At the second tag expansion pass, the 
declaration of telemetry statistics is applied to each variable 
found in the first pass. If the variable is not instrumented in 
the specification, nothing is produced; otherwise, the water 
mark or state statistic schema is applied according to the 
type of the variable. In the example, this produces the 
following result assuming that  there  are 18 possible values 
for the MDC-States-t enumeration: 

typedef  struct { 
MDC-States-t  previous-acs-mdc; 
int acs-mdc-episode-length; 
int acs-mdc-episode-counts[l8]; 
int acs-mdc-cumulative-counts[l8]; 
int error_tracking_mode[3]; 
double  error-current-mark[3]; 
double  error-achieved-mark[3]; 

} mon-control-error-statistics-t; 

This iterative code generation process comes full circle in 
that the above definition is incorporated in the type 
information database to support additional code generation 
about the telemetry statistics. On DS1, we generate from 
such definitions ground software to decode the telemetry 
packets  received  from the spacecraft and print them 
according to their engineering definitions and units. This 
process helps us enforce consistency between on-board and 
ground software as we change  the design, add local state 
variables or change the flight software interfaces. 



4.3 AGGREGATE SUMMARIZATION OF SPECIFICATIONS 

The second difference with the Matlab TLC approach stems 
from the process of summarizing specifications into 
aggregate specifications. This provides the code generator 
with a closed-world  view of all relevant entities. This 
knowledge was particularly useful on DS1 to enable the 
code generation templates to process collections of entities 
like the set of all monitors or the set of all responses. 

A more subtle application of aggregate summarization 
occurred in the definition of the fault-protection telemetry 
to indicate the progress of a fault-response statechart 
execution. The underlying problem that motivated this 
effort was the need of recording a sufficient amount of 
information to trace what actions a fault-response statechart 
performed during  its execution. There is limited memory 
available to store such information; yet a response can 
spend a significant amount of time waiting for events to 
occur (e.g., deploying the panels). We  also did not  want to 
overload the statechart notation with superfluous logging 
commands because they would complicate our  design and 
review process and inconsistencies could emerge between 
the logging commands and  the actual state definitions. To 
define an automatic statechart execution logging 
mechanism, we used the aggregate summary of all 
statecharts to compute the set of all possible statechart 
execution paths. As shown in Fig. 2, one statechart can call 
another statechart as a subroutine via the 'GOTO' 
mechanism. Thus, we can define a statechart call graph 
from the possible ways  'GOTO' statements can  be  nested. 
On DSI, this graph contains 93 vertices and 92 edges. Each 
vertex represents a distinct path from a top-level statechart 
to the currently executing statechart through a stack of 
nested 'GOTO' calls. By monitoring statechart state 
transitions and 'GOTO' calls, we defined an algorithm to 
update the  current vertex in the statechart call graph. Then, 
it suffices to record the id of the current vertex in that 
graph to fully explain the history of statechart executions 
up to  the  current  statechart state. On the ground side, there 
is a dual algorithm which looks up the graph vertex ids and 
produces the corresponding paths of statechart GOTO calls. 
This combination of graph encoding/decoding algorithms 
produces a minimum-length mechanism to monitor and 
record statechart execution on DSI. With this compact 
representation, we also summarized the set of all relevant 
external inputs necessary and sufficient to fully explain all 
statechart transitions based  on external events. This 
example illustrates one of the customizations of the 
StateflowB toolbox we performed for DSI ; other 
customizations are described in the next section. 

4.4 EXTENSIONS AND CUSTOMIZATIONS OF STATEFLOW 

Modifying a behavioral code generator like Stateflow raises 
an acute issue: the vendor, here the Mathworks, has spent 
considerable effort in validating the code generator. 
Specifically, the vendor has the responsibility to ensure that 
the behavioral semantics of the generated code precisely 
match the semantics of the diagrammatic statechart 
notation. In modifying the code generator, we introduce the 
possibility of breaking this property, thereby exposing the 

project to additional risks and costs. At first approximation, 
this would preclude modifying the Stateflow code 
generator. However, it was necessary for the DS1 flight 
software architecture to address a number of difficult 
issues: 

1) Altering the form and organization of the generated 
code to comply  with the DS-I programming 
guidelines. 

The Stateflow-generated code is isomorphic to the topology 
of a statechart in the following sense that each state 
translates into a fixed  set of functions: 

<State>/ 
entry: ... 
during: ... 
exit: ... 
on <@/BUT>: ... 

I I  <entry function> 

I I 1  

-I <exit function> 

Generated Code nl 
Our modification consisted in changing  the naming 
conventions used  for the names of the entry, during  and 
exit functions. These naming convention changes were also 
propagated to relevant areas of the generated code as well 
(e.g., the enumerated list of state names). 

2) Altering the organization of the generated code to 
preserve a consistent topological order so that version 
control software can track local changes in the state 
diagrams to local changes in the generated code. 

The order in which Stateflow visits states controls the order 
in which state functions are generated. Stateflow uses  two 
criteria for visiting states: the hierarchical structure of the 
statechart and a Matlab-generated identifier. The former 
controls how hierarchically nested states are visited; the 
latter controls how sibling states at a given  level in the 
hierarchy are visited. Our modification consisted in using 
an external criterion for visiting sibling states: we  used the 
alphabetical order of the state names. 

3) Defining project-specific semantics for event broadcast 
in state diagrams. 

For each external event defined, Stateflow generates 
broadcast functions to inform the statechart of the 
occurrence of such events. However, this broadcast 
mechanism is unconditional. For DS1, we had to define 
lexical scoping rules for broadcasting events. The DS1 
fault-protection engine allows three concurrent timers for 
each statechart: TIMEOUT, NOTIFICATIONl, and 
NOTIFICATION2. A special action provides a mechanism 
to start one of these timers. The fault-protection engine is 
notified  whenever a timer delay expires. However, the fault- 
protection engine cannot broadcast the corresponding 



EVENT without some checking. External inputs may have 
changed and caused state transitions where  the timer is no 
longer relevant as illustrated in Fig. 2 for the ’deployment 
attempts’ superstate. The ’1” deployment attempt’ state 
guarantees a minimum of panel deployment effort. Once 
this is complete however, we want to make multiple passes 
at subsequent deployment attempts until there is a positive 
confirmation of panel deployment from the sensors. 
Suppose that  the positive confirmation occurs before the 
pending timer delays expire. The transition to ’extra 
deployment delay’ occurs where a new timer delay is 
requested. There is now a race situation between the 
expiration of these two timer delays. To handle such 
situations properly, it  is customary to tag timer requests and 
match them with the tag of the timer expiration 
notification. However, this does not  resolve the issue that 
the timer can become obsolete because of some other 
transition occurred. To handle such situations, we tag the 
timer requests with the id of the  state where the timer is 
requested. Upon receipt of a timer delay expiration, we 
check that  the  current  state of the statechart is a substate of 
the tagged timer state. This mechanism makes timer 
requests lexically scoped relative to the state where the 
timer delay is requested. 

4) Extending Stateflow to external datatypes. 

Normally, Stateflow handles all  data types that Matlab 
Simulink knows about. Unfortunately, this does  not include 
C pointers, enumerated types and nested C structures. Since - the DSI software interfaces use these datatypes, we had to 
perform some post-processing of the Stateflow-generated 
code to restore the proper pointer and structure references. 
In that regard, Stateflow-generated files are considered like 
templates for ITLC. The expansion of  such templates then 
makes extensive use of the type information database and 
makes the closed-world assumption that all types are 
defined in the database. This property allows us to define a 
simple search & replace algorithm: given an architectural 
definition of which data structures are accessible in a 
statechart, we can exhaustively enumerate all leaf attributes 
of such structures. Then, we can replace all occurrences of 
the leaf symbols in the generated code with the proper 
pointer or structure reference syntax to access this leaf 
attribute. 

Despite the extent of the customizations and improvements 
made over time to Stateflow and  to ITLC, we adopted a 
strategy that excluded all manual editing of the Stateflow 
and ITLC-generated code. Since our code generation 
approach is complete in that it targets both the structure 
and  the behavior of the software, there are no other 
software attributes that require user input. Without manual 
editing of the generated software, we have been able to 
focus our efforts on ensuring that the code generators 
addressed all software integration issues necessary to enable 
early testing of the whole fault-protection software. As 
shown in  Fig. 5, the integration and test of the whole DS1 
avionics software including fault-protection started about 
six months after start of the FP design effort. 

5. TESTING 

As is always the case when new technologies are introduced 
to the conservative environment of interplanetary flight 
projects, there was substantial discomfort in relying on 
automatic code generation. Most of the concerns fell into 
three categories: 

1) Is the state diagram format adequate to describe the 
richness of behaviors required for the fault protection 
system? 

2) Can the code generator be trusted to implement the 
desired logic in C? 

3) Will the FP team end up spending more time 
debugging the code generator than debugging the 
flight software? 

The FP team’s approach for alleviating these concerns was 
“Testing, testing, and more testing.” The plan was to 
rapidly prototype the most complex behavior required of the 
DSl fault protection system and exhaustively test its 
generated software. The  rationale being that if the most 
complex behavior can be developed using this 
methodology, the feasibility of developing less elaborate 
behaviors would no longer be in doubt. The behavior 
chosen  for the prototype  was Standby Mode, which is the 
algorithm entrusted to get the spacecraft power  positive, 
communicative, and thermally safe in case of emergencies. 

Testing was conducted in three phases: unit testing, DS1 
Testbed testing, and spacecraft system testing. During unit 
testing, the goal was to test every branch in the fault 
protection logic in a stand-alone environment. On the DS1 
Testbed, the objective  was to test only the most likely fault 
scenarios while including the interactions and  timing with 
other flight software elements, using a copy  of the flight 
computer, and the 1553 bus. Finally, testing on the actual 
spacecraft concentrated on exercising behaviors that 
utilized extensive software to  hardware interfaces. 

Several requirements hinged on the design of the FP unit 
test platform: 

Isolation: To remove external dependencies on other 
flight software modules, all external interfaces to the 
fault-protection software were completely simulated. 
Rapid-prototyping: To enable quick turnaround 
between analysis and design of FP monitors and 
responses, we needed a mechanism  to quickly exercise 
new designs, to verify that design modifications 
preserved earlier results, and exercise complex 
scenarios. 
Behavior reconstruction: Eventually, testing would 
move to other platforms were visibility is greatly 
reduced to the real-time operation of the flight 
software. To enable detailed analysis of the FP software 
behavior, we needed to  ensure  that real-time events 
recorded in other testbeds could be matched to specific 
FP scenarios on unit test. Once matched, a non- 
realtime replay of the scenario on a unit testbed  then 



DS1 Fault Protection Testing Schedule 

Date 

Figure 5: Evolution  of  the DS1 Fault-Protection  scope  and  progress  from design to test. 
provided additional visibility into  the inner-workings 
of the FP mechanisms. 

The white-box unit tests were performed one or two 
modules at a time, with very little interaction with other 
flight software elements and  no interaction with actual 
flight hardware. Each unit test consists of a script of 
stimulus/response commands. Stimulus commands emulate 
the  state of external interfaces while response commands 
check the  internal  and external state of the FP software. 
The unit tests provided little insight into whether the 
messages and flags to  and from the fault protection system 
were synchronized with other flight software elements. In 
spite of these shortcomings, this phase of testing was 
valuable because the objective was to exercise all paths 
through the software. Such extensive testing of the logic 
would  not be possible on the DS1 Testbed or  on the actual 
spacecraft due  to  time constraints. Test time on the DS1 
Testbed was an oversubscribed commodity since every 
subsystem needed it  to validate their software as well as the 
operations team who used it to  test flight sequences. Time 
on the spacecraft was even scarcer since all of flight 
software testing had to share time with electrical, 
mechanical fabrication and test activities. 

To provide white-box visibility into  the FP software, unit 
test scripts do not run in real-time: the clock can be stopped 
at any time to analyze the  state of the FP monitors and 
responses.  Because all external interfaces are simulated in 
non-realtime, a unit test exercises only one possible 
interleaving of the order in which external events and  data 
can occur. This limitation turned out to be helpful to 
reconstruct specific scenarios seen in other testbeds or the 
spacecraft. But there is a drawback as well. Since  the unit 
test environment simulates all external interfaces, it follows 
that external loops  between FP and  other  flight software 
modules  must be closed within the logic of a test script. 
This part turned out to be one of the most challenging 
aspects of scripting tests because we did not have a 
simulation model of the flight software modules at  the level 
of their interfaces, internal state  and behavior. 

Most likely fault scenarios were tested on the DSl Testbed. 
Spacecraft testing concentrated on functions that exercised 
software to hardware interfaces. About 75% of the testing 
was completed in test facility in Pasadena. Late software 
changes were  tested at Cape Canaveral. The unit test effort 
helped the system-level  test of the fault protection software 
in two other ways: 
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1) To refine the estimates of how many system-level test 
cases are necessary as a function of the fault-protection 
scope and 

2) Adjust the pace of the design & unit test  effort in order 
to  make deliveries of the FP software sufficiently early 
to  start system-level tests. 

Figure 5 shows how the scope of the FP design similarly 
evolved in order to reach a fully-tested, consistent FP 
system. Figure 6 shows how the scope of the system-level 
test effort evolved over time. 

6. IN-FLIGHT EXPERIENCE 

In addition to  the traditional fault-protection software, the 
FP subsystem used the code generator to produce the flight 
software that would guide  the spacecraft through post- 
separation and  initial acquisition activities. Due to power 
concerns, DSl was launched with the main  processor 
powered off until spacecraft separation, at which point fault 
protection software was  used to autonomously perform the 
following functions: 

1)  Configure the proper state of all the devices, switches, 
heaters and s/w states. 

2) Command the Attitude Control System (ACS) to 
detumble to rates less than .05 "hr .  

3) Command ACS to acquire a celestial reference and sun 
point. 

4) Deploy the solar arrays by turning on the primary and, 
if needed, redundant High-Output Paraffin (HOP) 
deployment actuators and turn them off  when finished. 

5) Command ACS to re-acquire attitude reference, re- 

6) Re-configure heaters and configure the 
orient to sun and place the  panels on sun. 

telecommunication system for downlink. 

Figure 2 is a simplified picture of the  main  state  chart  that 
drove the launch and initial acquisition process. This chart 
shows the variety of features we used in the  state charts: 
commands or messages to various tasks, messages from 
various tasks and timers. In the launch configuration state, 
FP sends commands to an assortment of software tasks or 
managers to configure for initial acquisition. In  the Stellar 
Reference Unit (SRU) acquisition state, FP commands ACS 
to estimate the spacecraft attitude  and to sun-point, then 
waits  for a message from ACS that it  has completed the 
turn, given up (timed-out) or that Navigation cannot supply 
ACS  with a valid ephemeris. During wing deployment, 
timers were  used  to turn on the HOPS for three minutes. 
Then the FP checks for release or deployment status from 
the Power  subsystem to determine if another attempt should 
be made. 

One important function  in this process was the use of 
"waypoints" to allow fault protection responses to 
temporarily or permanently interrupt  the  current response. 
Waypoints reside in the detumble and SRU acquisition 
states, at which point, if there is a pending fault protection 
response, action may be taken. 

Our in-flight experience aptly utilized all the state chart 
features. First of all, the detumble took almost nine 
minutes, six minutes longer that the expected detumble 
performance. Luckily, the software was set up to wait  for 



an ACS message that the rates were  low enough to continue 
(rather than depending on a timer). Next, ACS could not 
acquire a celestial reference, so after trying five different 
attitudes, they sent a message to FP that the acquisition 
attempts timed-out which enabled the transition to the 1'' 
deployment attempt state. 

Solar panel deployment occurred much faster than expected 
and  the arrays released 75 seconds after the heaters were 
turned on and completely latched up 90 seconds after that. 
This positive release and deployment confirmation enabled 
the transition to the extra deployment state to allow the 
wings to fully extend. In doing so, this transition bypassed 
all of the redundant deployment attempts we had allocated 
should the sensors have failed for example. The spacecraft 
essentially remained idle for  over  four minutes. However, 
the SRU acquired and began tracking during this lull so 
ACS immediately started the turn to sun after the 
deployment timer expired and the FF was reconfigured. 

During the second Sun acquisition state, the SRU processor 
began producing internal checksum errors and illegal 
software variable values. These events produced a persistent 
Celestial Inertial Reference Loss (CIRL) condition for the 
CIRL monitor to declare a fault. Since the 2nd Sun 
Acquisition State is also a waypoint, the fault-protection 
engine suspended the launch statechart and started the 
CIRL response. The FP CIRL response power  cycled the 
SRU, which seemed to clear up the problem after a few 
minutes and  the SRU re-acquired and began tracking. 
After the turn to sun completed, FP commanded a 
reconfiguration of the heater states, turned on the power 
amplifier and  initiated X-band downlink. 
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